ПЕРСПЕКТИВИ ВИКОРИСТАННЯ ЕКЗОМЕТАБОЛІТІВ МЕЗЕНХІМАЛЬНИХ СТОВБУРОВИХ КЛІТИН ЯК ПРОТИМІКРОБНИХ ЗАСОБІВ
Анотація
Ключові слова
Повний текст:
PDF (English)Посилання
Alcayaga-Miranda F., Cuenca J., Khoury M. (2017). Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Frontiers in immunology, 8: 339. DOI: 10.3389/fimmu.2017.00339
Ali M., Nelson A. R., Lopez A. L., Sack D. A. (2015). Updated global burden of cholera in endemic countries. PLoS neglected tropical diseases, 9(6): e0003832. DOI: 10.1371/journal.pntd.0003832
Asmussen S., Ito H., Traber D. L., Lee J. W. et al. (2014). Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax, 69(9): 819–825. DOI: 10.1136/thoraxjnl-2013-204980
Brasier N., Ates H. C., Sempionatto J. R., Cotta M. O. et al. (2023). A three-level model for therapeutic drug monitoring of antimicrobials at the site of infection. The Lancet Infectious Diseases: S1473–3099. DOI: 10.1016/S1473-3099(23)00215-3
Bujňáková D., Čuvalová A., Čížek M., Humenik F. et al. (2020). Canine bone marrow mesenchymal stem cell conditioned media affect bacterial growth, biofilm-associated Staphylococcus aureus and AHL-dependent quorum sensing. Microorganisms, 8(10): 1478. DOI: 10.3390/microorganisms8101478
Chugh T. D. (2008). Emerging and re-emerging bacterial diseases in India. Journal of biosciences, 33(4): 549–555. DOI: 10.1007/s12038-008-0073-0
Dryden M. (2018). Reactive oxygen species: a novel antimicrobial. International journal of antimicrobial agents, 51(3): 299–303. DOI: 10.1016/j.ijantimicag.2017.08.029
Gupta N., Krasnodembskaya A., Kapetanaki M., Mouded M. et al. (2012). Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax, 67(6): 533–539. DOI: 10.1136/thoraxjnl-2011-201176
Harman R. M., Yang S., He M. K., Van de Walle G. R. (2017). Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem cell research & therapy, 8(1): 1–14. DOI: 10.1186/s13287-017-0610-6
Johnson V., Webb T., Norman A., Coy J. et al. (2017). Activated mesenchymal stem cells interact with antibiotics and host innate immune responses to control chronic bacterial infections. Scientific reports, 7(1): 9575. DOI: 10.1038/s41598-017-08311-4
Khosrojerdi, A., Soudi, S., Hosseini, A. Z., Eshghi, F., Shafiee, A., & Hashemi, S. M. (2021). Immunomodulatory and therapeutic effects of mesenchymal stem cells on organ dysfunction in sepsis. Shock, 55(4), 423–440. DOI: 10.1097/SHK.0000000000001644
Kol A., Foutouhi S., Walker N. J., Kong N. T. et al. (2014). Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells and Development, 23(16): 1831–1843. DOI: 10.1089/scd.2014.0128
Krasnodembskaya A., Samarani G., Song Y., Zhuo H. et al. (2012). Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302(10): L1003–L1013. DOI: 10.1152/ajplung.00180.2011
Krasnodembskaya A., Song Y., Fang X., Gupta N. et al. (2010). Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem cells, 28(12): 2229–2238. DOI: 10.1002/stem.544
Kriebel K., Biedermann A., Kreikemeyer B., Lang, H. (2013). Anaerobic co-culture of mesenchymal stem cells and anaerobic pathogens-a new in vitro model system. PloS one, 8(11): e78226. DOI: 10.1371/journal.pone.0078226
Kumar Gupta R., Kumar Rai R., Kumar Tiwari P., Kumar Misra A. et al. (2023). A mathematical model for the impact of disinfectants on the control of bacterial diseases. Journal of Biological Dynamics, 17(1): 2206859. DOI: 10.1080/17513758.2023.2206859
Lee, J. W., Krasnodembskaya, A., McKenna, D. H., Song, Y., Abbott, J., & Matthay, M. A. (2013). Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. American journal of respiratory and critical care medicine, 187(7), 751–760. DOI: 10.1164/rccm.201206-0990OC
Lohner K. (2001). Development of novel antimicrobial agents: emerging strategies. Wymondham, Norfolk: Horizon Scientific Press.
Lombardo E., van der Poll T., DelaRosa O., Dalemans, W. (2015). Mesenchymal stem cells as a therapeutic tool to treat sepsis. World journal of stem cells, 7(2): 368. DOI: 10.4252/wjsc.v7.i2.368
Mahmoudi M., Taghavi-Farahabadi M., Namaki S., Baghaei K. et al. (2019). Exosomes derived from mesenchymal stem cells improved function and survival of neutrophils from severe congenital neutropenia patients in vitro. Human immunology, 80(12): 990–998. DOI: 10.1016/j.humimm.2019.10.006
Mazzolini R., Rodríguez-Arce I., Fernández-Barat L., Piñero-Lambea C. et al. (2023). Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nature Biotechnology: 1–10. DOI: 10.1038/s41587-022-01584-9
Mei S. H., Haitsma J. J., Dos Santos C. C., Deng Y. et al. (2010). Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American journal of respiratory and critical care medicine, 182(8), 1047–1057. DOI: 10.1164/rccm.201001-0010OC
Mezey É., Nemeth K. (2015). Mesenchymal stem cells and infectious diseases: smarter than drugs. Immunology letters, 168(2): 208–214. DOI: 10.1016/j.imlet.2015.05.020
Monsel A., Zhu Y. G., Gennai S., Hao Q. et al. (2015). Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. American journal of respiratory and critical care medicine, 192(3): 324–336. DOI: 10.1164/rccm.201410-1765OC
Mulholland E. K., Adegbola R. A. (2005). Bacterial infections – a major cause of death among children in Africa. The New England journal of medicine, 352(1): 75–77. DOI: 10.1056/NEJMe048306
Murray C. J., Ikuta K. S., Sharara F., Swetschinski L. et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325): 629–655. DOI: 10.1016/S0140-6736(21)02724-0
O'Neill J. (2016). Tackling drug-resistant infections globally: final report and recommendations. London: HM Government.
Park J., Kim S., Lim H., Liu A. et al. (2019). Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax, 74(1), 43-50. DOI: 10.1136/thoraxjnl-2018-211576
Saeedi P., Halabian R., Fooladi, A. A. I. (2019). Antimicrobial effects of mesenchymal stem cells primed by modified LPS on bacterial clearance in sepsis. Journal of cellular physiology, 234(4): 4970–4986. DOI: 10.1002/jcp.27298
Simoncic B., Tomsic B. (2010). Structures of novel antimicrobial agents for textiles – a review. Textile Research Journal, 80(16): 1721–1737. DOI: 10.1177/0040517510363193
Sisto F., Bonomi A., Cavicchini L., Coccè V. et al. (2014). Human mesenchymal stromal cells can uptake and release ciprofloxacin, acquiring in vitro anti-bacterial activity. Cytotherapy, 16(2): 181–190. DOI: 10.1016/j.jcyt.2013.11.009
Sung D. K., Chang Y. S., Sung S. I., Yoo H. S. et al. (2016). Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta‐defensin‐2 via toll‐like receptor 4 signalling. Cellular Microbiology, 18(3): 424–436. DOI: 10.1111/cmi.12522
Yagi H., Chen A. F., Hirsch D., Rothenberg A. C. et al. (2020). Antimicrobial activity of mesenchymal stem cells against Staphylococcus aureus. Stem cell research & therapy, 11(1): 1–12. DOI: 10.1186/s13287-020-01807-3
Yuan Y., Guo N., Zhao C., Shen S. et al. (2014). Marrow mesenchymal stromal cells reduce methicillin-resistant Staphylococcus aureus infection in rat models. Cytotherapy, 16(1): 56–63. DOI: 10.1016/j.jcyt.2013.06.002
Zhang Y., Cai W., Huang Q., Gu Y. Et al. (2014). Mesenchymal stem cells alleviate bacteria‐induced liver injury in mice by inducing regulatory dendritic cells. Hepatology, 59(2), 671–682. DOI: 10.1002/hep.26670
DOI: https://doi.org/10.34142/2708-5848.2023.25.1.03
Посилання
- Поки немає зовнішніх посилань.