СВІТОВИЙ ДОСВІД ОЦІНКИ ВПЛИВУ СОНЯЧНИХ ЕЛЕКТРОСТАНЦІЙ НА ПТАХІВ

A. V. Yuzyk

Анотація


Відновлювані джерела енергії, зокрема, й сонячні електростанції, в останні десятиліття набувають все більшого поширення. У зв’язку із значним зниженням собівартості сонячних панелей за останні два десятиліття, можна очікувати збльшення кількості фотоелектричних установок. Це призведе до формування і поширення нового виду антропогенно-трансформованих ландшафтів. За останнє десятиліття були опубліковані роботи, присвячені оцінці впливу сонячних електростанцій на ґрунтовий покрив, рослинність, тваринний світ, зокрема, орнітофауну. Основний акцент у цих дослідженях робиться на факторі загибелі із прогнозуванням пташиної смертності у міру збільшення сумарної потужності та площі фотоелектричних установок. Дослідники доходять висновку про недостатність наявних даних для розуміння повної картини всіх складних взаємовз’язків між абіотичним та біотичним складовими цього нового середовища існування. Станом на сьогодні вже достеменно відомо, що смертність птахів на об’єктах сонячної енергетики є найнижчою у порівнянні як із об’єктами, що працюють на викопному паливі, так і на інших джерелах відновлюваної енергії. Деякі результати свідчать навіть про позитивний вплив фотоелектричних установок на біорізноманіття, у порівнянні із іншими техногенно-трансформованими ландшафтами. Дослідження задокументували різні механізми, за допомогою яких сонячні електростанції можуть впливати на популяції птахів. Фізична присутність сонячних панелей може порушити маршрути польоту та місця гніздування. Однак також зазначається, що відбиваючі поверхні фотоелектричних панелей можуть приваблювати комах, що, у свою чергу, надає нові можливості для годування деяких видів птахів. Узагальнити наявну на даний час інформацію про світовий досвід оцінки впливу сонячних електростанцій на птахів й покликана дана робота.

Ключові слова


сонячна енергія, сонячні електростанції, птахи, вплив, смертність, моніторинг біорізноманіття

Повний текст:

PDF (English)

Посилання


Allison T.D., Root T.L., Frumhoff P.C. (2014) Thinking globally and siting locally – renewable energy and biodiversity in a rapidly warming world. Clim. Change (126): 1-6.

AlMallahi M. et al. (2024) A path to sustainable development goals: A case study on the thirteen largest photovoltaic power plants. Energy Conversion and Management: X (22), p. 100553.

Badelt O. et al. (2020) Integration von Solarenergie in die niedersächsische Energielandschaft (INSIDE). Niedersächsisches Ministerium für Umwelt, Energie, Bauen und Klimaschutz, Hannover.

Barrett S. B., DeVita P. M. (2011). Investigating safety impacts of energy technologies on airports and aviation. Airport Cooperative Research Program Synthesis 28. Washington, DC, USA: Transportation Research Board of the National Academies.

Blaydes H. et al. (2021) Opportunities to enhance pollinator biodiversity in solar parks. Renew. Sust. Energ. 145: e111065. doi.org/10.1016/j.rser.2021.111065.

Bowler D. et al. (2019) Long‐term declines of European insectivorous bird populations and potential causes. Conservation Biology 33(5): 1120-1130. doi.org/10.1111/cobi.13307.

California Energy Commission (Tyler et al.) (2012) Appendix BIO1 – Biologocial Resources Risk Assessment of Avian Exposure to Concentrated Solar Radiation, Final Staff Assessment for the Hidden Hills Solar Electric Generating System Project.

California Valley Solar Ranch. Energy.gov – U. S. Department of Energy [online]. Available from: https://www.energy.gov/lpo/california-valley-solar-ranch/ [Accessed 21.05.2024].

Cameron D.R., Cohen B.S., Morrison S.A. (2012) An Approach to Enhance the Conservation-Compatibility of Solar Energy Development. PLOS ONE 7(6): e38437.

Cho A. (2010). Energy’s tricky tradeoffs. Science 329: 786-787.

Dale V.H., Efroymson R.A., Kline K.L. (2011) The land use-climate change-energy nexus. Landscape Ecology 26(6): 755-73.

De Vault T.L., Seamans T.W., Schmidt J.A., Belant J.L., Blackwell B.F., Mooers N., L.A. Tyson, Van Pelt L. (2014) Bird use of solar photovoltaic installations at US airports: implications for aviation safety, Landsc. Urban Plann. 122: 122-128.

Dunn E.H. (1993) Bird mortality from striking residential windows in winter. J. Field Ornithol. 64(3): 302-309.

Erickson W.P., Johnson G.D., Young D.P. Jr. (2005) A Summary and Comparison of Bird Mortality from Anthropogenic Causes with an Emphasis on Collisions, USDA Forest Service Ge. Tech. Rep. PSW-GTR-191.

Erickson W.P., Wolfe M.M., Bay K.J., Johnson D.H., Gehring J.L. (2014) A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities. PLOS ONE 9(9): e107491.

Faaborg J., Holmes R.T., Anders A.D., Bildstein K.L., Dugger K.M. et al. (2010) Recent advances in understanding migration systems of New World land birds. Ecol. Monogr. (80): 3-48.

Fargione J. E., Cooper T. R., Flaspohler D. J., Hill J., Lehman C., McCoy T. et al. (2009). Bioenergy and wildlife: Threats and opportunities for grassland conservation. BioScience (59): 767-777.

Feldman D. et al. (2023) Spring 2023. Solar Industry Update. The National Renewable Energy Laboratory presentation. 88 р.

Hansen A.J., McComb W.C., Vega R., Raphael M.G., Hunter M. (1995) Bird habitat relationships in natural and managed forests in the west Cascades of Oregon, Ecol. Appl. (5): 555-569.

Harrison C., Lloyd H., Field C. (2017) Evidence review of the impact of solar farms on birds, bats and general ecology. Natural England.

Harte J., Jassby A. (1978) Energy technologies and natural environments: the search for compatability. Annual Review of Energy 3(1): 101-46.

Harvey H. T. and Associates (2014) California Valley Solar Ranch Project Avian and Bat Protection Plan: Quarterly Post-construction Fatality Report 16 November 2013, 15 February 2014. Unpublished report to HPR II, PLC, California Valley Solar Ranch, San Luis Obispo.

Harvey H. T. and Associates (2015). Ivanpah Solar Electric Generating System Avian & Bat Monitoring Plan 2013-2014 Annual Report (Revised), Docket Number 07-AFC-05C, TN#204258.

Hernandez R.R. et al. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews 29: 766-779.

Ho C. (2016) Review of avian mortality studies at 1734 (1), 070017 (31 May 2016), p. 1-8. Available from: https://doi.org/10.1063/1.4949164

Ho C., Horstman L. (2017) Evaluation of Heliostat Standby Aiming Strategies to Reduce Avian Flux Hazards and Impacts on Operational Performance: Paper No. ES2017-3628. Paper presented at ASME 11th International Conference on Energy Sustainability (2017, Charlotte, North Carolina). doi: 10.1115/ES2017-3628. Available from: https://research-hub.nrel.gov/en/publications/evaluation-of-heliostat-standby-aiming-strategies-to-reduce-avian

Ho C., Horstman L., Yellowhair J. (2017) A Method to Assess Flux Hazards at CSP Plants to Reduce Avian Mortality: Paper No. 030026. Paper presented at SOLARPACES International Conference on Concentrating Solar Power and Chemical Energy Systems (2016, Abu Dhabi, United Arab Emirates). doi: 10.1063/1.4984369. Available from: https://research-hub.nrel.gov/en/publications/a-method-to-assess-flux-hazards-at-csp-plants-to-reduce-avian-mor

Horváth G., Kriska G., Malik P., Robertson B. (2009) Polarized light pollution: a new kind of ecological photo pollution. Front. Ecol. Environ 7: 317-325.

Huso M. (2010) An estimator of mortality from observed carcasses. Environmetrics 21(3): 318-329. doi.org/10.1002/env.1052.

IEA-PVPS T1-37: 2020, Snapshot of Global PV Markets.

Jarčuška B. et al. (2024) Solar parks can enhance bird diversity in agricultural landscape. Journal of Environmental Management 351: e119902. doi.org/10.1016/j.jenvman.2023.119902.

Kagan R.A., Viner T.C., Trail P.W., Espinoza E.O. (2014) Avian Mortality at Solar Energy Facilities in Southern California: a Preliminary Analysis, Unpublished report to US National Fish and Wildlife Forensic Laboratory, Ashland.

Kitazawa M. et al. (2019) An evaluation of five agricultural habitat types for openland birds: abandoned farmland can have comparative values to undisturbed wetland. Ornithol. Sci. 18(1): 3-16. doi.org/10.2326/osj.18.3.

Klem D. (1990) Collisions between birds and windows: Mortality and prevention, J. Field Ornithol. 61(1): 120-128.

Kosciuch K. et al. (2020) A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S. Plos one. 15(4):. e0232034. doi.org/10.1371/journal.pone.0232034.

Kuvlesky W.P. Jr., Brennan L.A., Morrison M.L., Boydston K.K., Ballard B.M., Bryant F.C. (2007) Wind energy development and wildlife conservation: challenges and opportunities. J. Wildl. Manag. 71(8): 2487-2498.

Lambert Q. et al. (2023) Photovoltaic power stations: an opportunity to promote European semi-natural grasslands? Frontiers in Environmental Science 11: e1137845. doi.org/10.3389/fenvs.2023.1137845.

Largest solar thermal power stations (CSP) list. Listsolar [online]. Available from: https://list.solar/plants/largest-plants/csp/

Leroy J., Walston Jr. et al. (2016) A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renewable Energy 92: 405-414.

Longcore Rich C., Mineau P., MacDonald B., Bert D.G. T. et al. (2012) An estimate of avian mortality at communication towers in the United States and Canada, PLOS ONE 7(4): e34025.

Loss S.R., Will T., Marra P.P. (2014) Estimation of bird-vehicle collision mortality on U.S. roads. J. Wildl. Manag. 78(5): 763-771.

Lovich J.E., Ennen J.R. (2011) Wildlife conservation and solar energy development in the desert southwest, United States. Bioscience 61: 982-992.

Lovich, J. E., Ennen, J. R. (2013). Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife. Applied Energy 103: 52-60.

Lovins A. B. (1976). Energy Strategy: The Road Not Taken? Foreign Affairs 55(1): 65-6. doi.org/10.2307/20039628.

Maina C., Muchiri D., Njooroge P. (2016) A Bioacoustic Recordof a Conservancy inthe Mount Kenya Ecosystem. Biodiversity Data Journal. p. 1-22. DOI: 10.3897/BDJ.4.e9906.

McCrary M.D., McKernan R.L., Schreiber R.L., Wagner W.D., Sciarrotta T.C. (1986) Avian mortality at a solar energy power plant. Journal of Field Ornithology 57(2): 135-41.

McDonald R. I., Fargione J., Kiesecker J., Miller W. M. & Powell J. (2009). Energy sprawl or energy efficiency: Climate policy impacts on natural habitat for the United States of America. PLOS ONE, 4(8): e6802.

Mohamed A., Maghrabie Hussein M. (2022) Techno-economic feasibility analysis of Benban solar Park, Alexandria Engineering Journal 61(12): 12593-12607 ISSN 1110-0168. Available from: https://doi.org/10.1016/j .aej.2022.06.034.

Montag H., Parker G., Clarkson T. (2016) The comparative study. Clarkson and Woods and Wychwood Biodiversity.

Moreau J. et al. (2022) Pesticide impacts on avian species with special reference to farmland birds: a review. Environ. Monit. Assess 194(11): 790. doi.org/10.1007/s10661-022-10394-0.

Nelson J. (2003) The physics of solar cells. London, Imperial College.

Nordberg E., Caley M., Schwarzkopf L. (2021) Designing solar farms for synergistic commercial and conservation outcomes. Sol. Energy 228: 586-593. doi.org/10.1016/j.solener.2021.09.090.

One weird trick prevents bird deaths at solar towers. Cleantechnica [online]. Available from: https://cleantechnica.com/2015/04/16/one-weird-trick-prevents-bird-deaths-solar-towers/ [Accessed 23.05.2024].

Pavlović T.M., Radonjić I.S., Milosavljević D.D., Pantić L.S. (2012) A review of concentrating solar power plants in the world and their potential in Serbia. Renewable and Sustainable Energy Reviews 16(6): 3891-902.

Peschel R. et al. (2019) Solar parks-profits for biodiversity. Association of Energy Market Innovators (bne/Bundesverband Neue Energiewirtschaft eV).

Ponce C., Alonso J.C., Argandona G., Fernandez A. García, Carrasco M. (2010) Carcass removal by scavengers and search accuracy affect bird mortality estimates at powerlines, Anim. Conserv. 13: 603-612.

Power plant profile: Spotsylvania Solar PV Park, US. Power-technology [online]. Available from: https://www.power-technology.com/data-insights/power-plant-profile-spotsylvania-solar-pv-park-us/ [Accessed 21.05.2024].

Šálek M. et al. (2022) Evaluating conservation tools in intensively-used farmland: higher bird and mammal diversity in seed-rich strips during winter. Agric. Ecosyst. Environ 327: e107844. doi.org/10.1016/j.agee.2021.107844.

Santolo G. (2012) Potential for Solar Flux Impacts to Avian Species, Hidden Hills Solar Electric Generating System (HHSEGS) (11-AFC-2).

Saunders D.A., Hobbs R.J., Margules C.R. (1991) Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5(1): 18-32.

Schreiber R.K., Graves J.H. (1977) Powerline corridors as possible barriers to the movement of small mammals. American Midland Naturalist 97(2): 504-508.

Shankar A., Saxena A., Mazumdar R. (2024) Concentrating solar power plants with storage: deployment essential now. The Energy and Resources Institute, India. Available from: https://www.teriin.org/policy-brief/concentrating-solar-power-plants-storage-deployment-essential-now/ [Accessed 21.05.2024.

Shoenfeld P. (2004) Suggestions Regarding Avian Mortality Extrapolation. Technical Memo provided to FPL Energy. West Virginia Highlands Conservancy, HC70, Box 553, Davis, West Virginia, 26260.

Sims C., Ho C., Horstman L., Yellowhair J. (2018) Tower Illuminance Model (TIM): Interactive Real-Time Flyover Simulation Tool to Evaluate Glare and Avian-Flux Hazards: Paper No. 210017. Paper presented at SolarPACES International Conference on Concentrating Solar Power and Chemical Energy Systems (2017, Santiago, Chile). doi: 10.1063/1.5067219. Available from: https://research-hub.nrel.gov/en/publications/tower-illuminance-model-tim-interactive-real-time-flyover-simulat

Smallwood K.S. (2013) Comparing bird and bat fatality-rate estimates among North American wind-energy projects. Wildl. Soc. Bull. 37:19-33.

Smallwood K.S., Bell D.A., Snyder S.A., Didonato J.E. (2010) Novel scavenger removaltrials increase wind turbine-caused avian fatality estimates, J. Wildl. Manag.74(5):1089-1097.

Smith J. A., Dwyer J. F. (2016) Avian interactions with renewable energy infrastructure: An update. The Condor: Ornithological Applications 118(2): 411-423.

Solangi K.H., Islam M.R., Saidur R., Rahim N.A., Fayaz H. (2011) A review on global solar energy policy. Renewable and Sustainable Energy Reviews 15(4): 2149-2163.

Somveille M., Manica A., Butchart S.H.M., Rodrigues A.S.L. (2013) Mapping global diversity patterns for migratory birds, PLOS ONE 8: e70907.

Sovacool B.K. (2009) Contextualizing avian mortality: a preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity. Energy Policy 37 (6): 2241-2248.

Spaargaren G. (2003) Sustainable consumption: a theoretical and environmental policy perspective. Society & Natural Resources 16(8): 687-701.

Stanton R., Morrissey C., Clark R. (2018) Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agriculture, Ecosystems & Environment 254: 244-254.

Tawalbeh M. et al. (2021) Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of the total environment 759: e143528. doi.org/10.1016/j.scitotenv.2020.143528

Taylor R. et al. (2019) Potential ecological impacts of ground-mounted photovoltaic solar panels. An introduction and literature review.

The most powerful solar power plants of Ukraine. Infographics. Ukrinform. [online]. Available from: https://www. ua/rubric-other_news/2887951-najpotuznisi-sonacni-elektrostancii-ukraini-infografika.html/ [Accessed 21.05.2024].

Tsao J., Science. B.E., Lewis. N., Crabtree. G. (2006) Solar FAQs. Sandia National Labs, р.1-24.

Tsoutsos T., Frantzeskaki N., Gekas V. (2005) Environmental impacts from the solar energy technologies. Energy Policy 33(3): 289-96.

U.S. Department of Energy (DOE), SunShot Vision Study – February 2012, Prepared by the U.S. Department of Energy SunShot Initiative. Available from: http://www1.eere.energy.gov/solar/pdfs/47927.pdf. [Accessed 20.05.2024].

Urban M. C. (2015) Accelerating extinction risk from climate change. Science 348(6234): 571-573.

Visser Elke et al. (2019) Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa. Renewable Energy 133. p. 1285-1294.

Walston L.J. et al. (2015) A Review of Avian Monitoring and Mitigation Information at -Scale Solar Facilities, Report No. ANL/EVS-15/2.

Yuzyk A. V., Yuzyk D. I. (2023) The case of nesting of the black redstart PHOENICURUS OCHRUROS within the bounds of a small photovoltaic solar power plant in the Bukovinian Carpathians (Putyla township). Ornithological research in Ukraine: past, present and prospects. Kharkiv: FOP Panov, 166-169.

Yuzyk D. I., Yuzyk A. V. (2023) To the results of acoustic monitoring of common bird species within the solar power plant area in the Bukovinian Carpathians. Ornithological research in Ukraine: past, present and prospects. Kharkiv: FOP Panov, 162-165.

Yuzyk D. I., Yuzyk A. V. (2024) Acoustic monitoring of birds during spring migration in Bukovinian Carpathians: effectiveness of birdsong decoding tools. Acta Biologica Ukrainica. 1 (2024): 30-43. DOI: 10.26661/2410-0943-2024-1-04.

Zahedi A. (2006) Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems. Renewable Energy 31(5): 711-718.




DOI: https://doi.org/10.34142/2708-5848.2024.26.1.06

Посилання

  • Поки немає зовнішніх посилань.