ГІСТОМОРФОМЕТРИЧНІ ВІДМІННОСТІ ПІДШЛУНКОВОЇ ЗАЛОЗИ ЩУРІВ З РІЗНИМ ЕНЕРГЕТИЧНИМ МЕТАБОЛІЗМОМ ПІСЛЯ ВПЛИ-ВУ ДОЗОВАНОЇ НОРМОБАРИЧНОЇ ГІПОКСІЇ

Р. В. Янко, М. О. Завгородній, В. І. Портніченко

Анотація


Роботи, в яких досліджувався би вплив тривалої дії дозованої нормобаричної гіпоксії (ДНГ) помірного рівня на морфо-функціональний стан підшлункової залози (ПЗ), поодинокі. А дані про гістоморфологічні зміни ПЗ при впливі ДНГ, в залежності від рівня енергетичного метаболізму в організмі, взагалі відсутні. Метою роботи було дослідити та порівняти зміни гістоморфометричних показників підшлункової залози у щурів з різним метаболі-змом після впливу дозованої нормобаричної гіпоксії. Дослідження проведено на щурах-самцях лінії Вістар. Дослідні щури щодня отримували гіпоксичну газову суміш (12 % кисню в азоті) у переривчастому режимі (15 хв деоксигенація / 15 хв реоксигенація протягом 2 годин). Кількість сеансів ДНГ становила 28. Наприкінці досліду щурів як з контрольної, так і дослідної групи, розподілили на тварин з низьким і високим рівнем енер-гетичного метаболізму (РЕМ). РЕМ у щурів визначали за інтенсивністю споживання кисню. З ПЗ виготовляли гістологічні препарати, на яких потім проводили гістоморфометричний аналіз. Для цього використовували комп’ютерну програму «Image J 1.34p». Виявлено, що вплив ДНГ у щурів з високим РЕМ позитивно впливав на стан ПЗ. Насамперед зросла ендокринна функція залози: значущо збільшилася відносна площа (на 51 %), кіль-кість острівців Лангерганса (на 17 %), їх площа (на 30 %) та кількість розміщених у них клітин (на 23 %). У тварин з низьким РЕМ активність ендокринної частини ПЗ, навпаки, знизилася, а екзокринної частини – не змінилася. Кількість сполучнотканинних елементів у ПЗ, незалежно від РЕМ, зменшувалася. Отримані резуль-тати мають значення для обґрунтування можливості використання гіпоксичних газових сумішей у профілактиці та лікуванні метаболічних розладів залежно від рівня енергетичного метаболізму пацієнтів

Ключові слова


підшлункова залоза, дозована нормобарична гіпоксія, споживання кисню, гістоморфометрія, метаболізм

Повний текст:

PDF

Посилання


Asanov E.O., Svintsytskyi A.S., Polyagushko L.G., Dyba I.A., Osmak E.D. (2017) Influence of hypoxic training on autonomic nervous system in elderly patients with COPD. Ukr. Pulmonol. J. 1: 31–36. (in Russion).

Atkinson M.A., Campbell-Thompson M., Kusmartseva I., Kaestner K.H. (2020) Organisation of the human pancreas in health and in diabetes. Diabetologia. 63(10): 1966–1973. doi: 10.1007/s00125-020-05203-7

Carlsson P.O., Jansson L., Palm F. (2002) Unaltered oxygen tension in rat pancreatic islets despite dis-sociation of insulin release and islet blood flow. Ac-ta Physiol Scand. 176: 275–281. doi.org/10.3389/fendo.2018.00668

Catrina S.B., Zheng X. (2021). Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia. 64(4): 709–716. doi: 10.1007/s00125-021-05380-z

Gonchar O.A., Rozova E.V. (2007) Effects of differ-ent modes of interval hypoxic training on morpho-logical characteristics and antioxidant status of heart and lung tissues. Bull Exp Biol Med. 144(2): 249–252. doi: 10.1007/s10517-007-0302-9

Gu C., Jun J.C. (2018) Does hypoxia decrease the metabolic rate? Front Endocrinol (Lausanne). 13(9): 668. doi: 10.3389/fendo.2018.00668

Hossain M.A., Mostofa M., Awal M.A., Chowdhury E.H., Sikder M.H. (2014) Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with aqueous extracts of Momordica charantia (karela) fruits. Asian Pa-cific Journal of Tropical Disease. 4(2): S698–S704. doi: 10.1016/S2222-1808(14)60710-6

Hua L, Yan D, Wan C, Hu B. (2022) Nucleolus and nucleolar stress: From cell fate decision to disease development. Cells. 11(19): 3017. doi: 10.3390/cells11193017

Ivanenko T.V., Kolesnyk Y.M., Abramov A.V. (2024) Characteristic of a group of genes with low level of expression in the pancreas of rats under conditions of multi-day intermittent hypoxia influence Pathologia. 21(1): 23–27. doi: 10.14739/2310-1237.2024.1.301114. (in Ukrainian).

Kolesnyk Y.M., Abramov A.V., Ivanenko T.V., Zhulinskyi V.O. (2014) The features of expression of bcl-2 and p53 proteins and proliferative activity in pancreatic islets under the influance of intermit-tent hypoxia in experimental condition. Reports of Morphology. 20(2): 366–368. (in Ukrainian).

Kurhaluk N., Lukash O., Nosar V., Portnychenko A., Portnichenko V., Wszedybyl-Winklewska M., Winklewski P.J. (2019) Liver mitochondrial respira-tory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high resistance to ex-treme hypobaric hypoxia. Can J Physiol Pharmacol. 97(5): 392–399. doi: 10.1139/cjpp-2018-0642

Kurhaluk N., Lukash O., Tkaczenko H. (2023) Do the effects of krebs cycle intermediates on oxygen-dependent processes in hypoxia mediated by the ni-tric oxide system have reciprocal or competitive re-lationships? Cell Physiol Biochem. 57(6): 426–451. doi: 10.33594/000000669

Madan K., Paliwal S., Sharma S., Kesar S., Chauhan N., Madan M. (2023) Metabolic syndrome: The constellation of co-morbidities. A Global Threat. Endocr Metab Immune Disord Drug Targets. 23(12): 1491–1504. doi: 10.2174/1871530323666230309144825

Navarrete-Opazo A., Mitchell G.S. (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol. 307(10): R1181–1197. doi: 10.1152/ajpregu.00208.2014

O'Brien K.A., McNally B.D., Sowton A.P., Murgia A., Armitage J., Thomas L.W., Krause F.N., Madda-lena L.A., Francis I., Kavanagh S., Williams D.P., Ashcroft M., Griffin J.L., Lyon J.J., Murray A.J. (2021) Enhanced hepatic respiratory capacity and altered lipid metabolism support metabolic homeo-stasis during short-term hypoxic stress. BMC Biol. 19(1): 265. doi: 10.1186/s12915-021-01192-0

Olsson R., Carlsson P.O. (2011) A low-oxygenated subpopulation of pancreatic islets constitutes a functional reserve of endocrine cells. Diabetes. 60(8): 2068–2075. doi: 10.2337/db09-0877

Park H.Y., Kim S.W., Jung W.S., Kim J., Lim K. (2022) Hypoxic therapy as a new therapeutic modality for cardiovascular benefit: A mini review. Rev Cardiovasc Med. 23(5): 161. doi: 10.31083/j.rcm2305161

Portnychenko A.G., Vasylenko M.I., Aliiev R.B., Kozlovska M.G., Zavhorodnii M.O.,Tsapenko P.K., Rozova K.V., Portnichenko V.I. (2023) The prerequisites for the development of type 2 diabetes or prediabetes in rats fed a high-fat diet. Regul Mech Biosyst. 14(1): 16–22. doi: org/10.15421/022303

Rodriguez-Brotons A., Bietiger W., Peronet C., Magisson J., Sookhareea C., Langlois A., Mura C., Jeandidier N., Pinget M., Sigrist S., Maillard E. (2016) Impact of pancreatic rat islet density on cell survival during hypoxia. J Diabetes Res. 3615286. doi: 10.1155/2016/3615286

Salin K., Auer S.K., Rey B., Selman C., Metcalfe N.B. (2015). Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 282(1812): 20151028. doi: 10.1098/rspb.2015.1028

Semenza G.L. (2012) Hypoxia-inducible factors in physiology and medicine. Cell. 148(3): 399–408. doi: 10.1016/j.cell.2012.01.021

Serebrovska T.V., Portnychenko A.G., Drevytska T.I., Portnichenko V.I., Xi L., Egorov E., Gavalko A.V., Naskalova S., Chizhova V., Shatylo V.B. (2017) Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp Biol Med (Maywood). 242(15): 1542–1552. doi: 10.1177/1535370217723578

Suresh M.V., Balijepalli S., Solanki S., Aktay S., Choudhary K., Shah Y.M., Raghavendran K. (2023) Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation. 46(2): 491–508. doi,: 10.1007/s10753-022-01769-z

Suvarna K.S., Layton C., Bancroft J.D. (2019). Bancroft's theory and practice of histological tech-niques E-Book. Eighth Edition. Elsevier Health Sciences. doi: 10.1016/C2015-0-00143-5

Sweet I.R., Khalil G., Wallen A.R., Steedman M., Schenkman K.A., Reems J.A., Kahn S.E., Callis J.B. (2002) Continuous measurement of oxygen consumption by pancreatic islets. Diabetes Technol Ther. 4(5): 661–672. doi: 10.1089/152091502320798303

van Hulten V., van Meijel RL.J., Goossens G.H. (2021) The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: A systematic review. Rev Endocr Metab Disord. 22(2): 471–483. doi: 10.1007/s11154-021-09654-0

Woods A.L., Garvican-Lewis L.A., Rice A., Thompson K.G. (2017) 12 days of altitude expo-sure at 1800 m does not increase resting metabolic rate in elite rowers. Appl Physiol Nutr Metab. 42(6): 672–676. doi: 10.1139/apnm-2016-0693

Yamagata K., Tsuyama T., Sato Y. (2024) Roles of β-cell hypoxia in the progression of type 2 diabetes. Int J Mol Sci. 25(8): 4186. doi: 10.3390/ijms25084186

Yanko R.V. (2024) Age-related differences in the effect of intermittent fasting on the morphofunctional parameters of the rat's pancreas. The Journal of V. N. Karazin Kharkiv National University. Series Biology. 43: 136–142. doi: 10.26565/2075-5457-2024-43-12 (in Ukrainian).

Young A.J., Berryman C.E., Kenefick R.W., Derosier A.N., Margolis L.M., Wilson M.A., Carri-gan C.T., Murphy N.E., Carbone J.W., Rood J.C., Pasiakos S.M. (2018) Altitude acclimatization alle-viates the hypoxia-induced suppression of exoge-nous glucose oxidation during steady-state aerobic exercise. Front. Physiol. 9: 830. doi: 10.3389/fphys.2018.00830




DOI: https://doi.org/10.34142/2708-5848.2025.27.1.07

Посилання

  • Поки немає зовнішніх посилань.